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ABSTRACT

We describe a novel statistical inference approach to data conversion for

mixed-signal interfaces. We propose a data conversion architecture in which

a signal is observed by a set of sensors with uncertain parameters, such as

highly scaled comparator circuits in an analog-to-digital converter. These

sensor outputs are not used to form a quantized representation of the signal

but are used directly to make decisions in statistical inference problems such

as parameter estimation, classification, and signal detection. We derive a

mathematical model of this system and apply information-theoretic tools

to describe the achievable performance of such a converter in information

processing systems. In particular, we find asymptotic expressions for Fisher

information and Kullback-Leibler divergence in terms of the design param-

eters and the sensor statistics. Simulations of parameter estimation, clas-

sification, and symbol detection systems show that these architectures can

achieve strong performance even when the devices have significant process

variations. We also discuss practical system design and implementation is-

sues including sensor calibration and propose a lower-complexity suboptimal

estimation architecture. The analytical and simulation results suggest that it

is both possible and practical to build information processing systems using

unreliable mixed-signal components.
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CHAPTER 1

INTRODUCTION

This thesis addresses the problem of statistical decision making using binary

comparison observations of a signal from sensors that have random variations

in their parameters. These sensors may have significant advantages in size,

power, speed, or cost, but cannot be used in deterministic systems. We

present an architecture that leverages redundancy and statistical inference

techniques to build reliable information systems from unreliable components.

We model this architecture mathematically and give asymptotic bounds and

approximations for performance in information processing applications. The

goal of this thesis is to provide circuit and system designers with new models,

metrics, and design principles for data conversion with unreliable sensors.

1.1 Motivation

As semiconductor technology advances, systems are increasingly affected by

device-level uncertainty. Emerging technologies, such as highly scaled CMOS

circuits, offer improved performance and efficiency but exhibit random vari-

ation. These technologies can offer system designers a tradeoff between

efficiency and reliability. Information processing systems that deal with

inherently uncertain signals, such as communication receivers and machine

learning classifiers, for example, can be readily adapted to account for device-

level uncertainty. To best integrate unreliable devices into reliable systems,

the systems cannot be thought of as collections of individual components

connected together; instead, each component must be designed with system-

level performance in mind.

This work addresses mixed-signal interfaces, such as analog-to-digital con-

verters and sensor arrays, built with highly variable devices. We will focus in

particular on quantization circuits, which have been extensively studied and
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which could benefit significantly from these emerging technologies. High-

speed, high-resolution analog-to-digital converters (ADCs) are often limited

in speed and efficiency by large comparator circuits. Smaller circuits gener-

ally operate faster and consume less energy, but are more sensitive to process

variations. These variations are unacceptable in a deterministic quantizer;

in information systems, however, a mixed-signal interface need not behave

deterministically. By replacing the deterministic ADC with a stochastic

data converter that gathers uncertain observations about a signal, we can

take advantage of new technologies while still achieving reliable system-level

performance.

1.2 Background

1.2.1 Quantization architecture

Quantization is the problem of mapping a signal from a space of higher

cardinality to one of lower cardinality, for example from a continuous space

to a discrete space. Given an input signal x, the quantizer selects a codeword

from a finite set. Each codeword corresponds to a reconstruction point x̂ in

the original signal space. Generally, the quantizer is designed to minimize an

error metric between the input value and the reconstruction point, such as

the mean square error (MSE). A typical scalar quantizer works by dividing

the input space into intervals. All signals within a region are mapped to a

single codeword and the corresponding reconstruction point is the centroid

on that interval. The boundaries between regions are the midpoints between

reconstruction points. Such a design minimizes MSE.

For voltage signals, this type of quantizer can be implemented using a flash

ADC architecture, shown in Figure 1.1. The flash ADC consists of a number

of comparators with different reference levels corresponding to the boundaries

between quantization intervals. When the same input signal is applied to each

comparator, their outputs form a thermometer code: a string of 1’s followed

by a string of 0’s. A priority encoder converts the thermometer code to a

digital codeword. If the reference levels are uniformly spaced distance ∆v
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Figure 1.1: A deterministic flash ADC architecture. The signal is compared
to many reference levels to generate a codeword corresponding to a
quantized value.

apart, then the MSE of the ideal uniform quantizer is

MSEideal =
(∆v)2

12
. (1.1)

1.2.2 Process variations

For a flash ADC to function correctly, each comparator must compare the

signal to the correct reference level. However, no comparator circuit is

perfectly accurate: the reference level is subject to random offsets due to

process variations. If these variations are small compared to the spacing

between levels, as shown in Figure 1.2(a), then they will have a relatively

small impact on quantization performance. If the variations are large so that

the offsets can be larger than the spacing between levels, as in Figure 1.2(b),

then the true levels may be non-monotonic, causing errors in the encoder.

The random offset in a comparator reference level can be due to a mismatch

between the threshold voltages of nominally identical transistors [1]. These

threshold voltage variations can be caused by dopant fluctuations in the ac-

tive area of the transistor for deeply scaled CMOS circuits. These have been

thoroughly studied in the circuits literature and are generally characterized
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Figure 1.2: When process variations are small, the distributions of
comparator reference levels do not overlap (a); when variations are large,
the distributions can overlap (b) and cause errors in the quantizer output.

as having a normal distribution with variance inversely proportional to the

transistor gate area [2]. Thus, more advanced semiconductor processes with

smaller gate areas will likely produce comparators with greater variation.

Deterministic ADCs, which cannot tolerate large offsets, must therefore use

large transistors for comparator circuits and cannot take advantage of newer,

smaller device technologies.

1.3 Prior Work

1.3.1 ADC calibration

Several authors have explored the possibilities of designing flash ADCs using

comparator circuits with large offsets. Early designs, such as the offset

cancellation stage in [3], used analog calibration techniques to directly cor-

rect the comparator offsets. Other designs used digital techniques, such

as reassigning or disabling comparators with large offsets [4]. A hybrid

approach with analog trimming and digital calibration logic was proposed

in [5]. In [6], a conventional thermometer-to-binary converter was modified

with fault-tolerant digital logic to handle non-monotonicity in the thresholds.

The design in [7] used a fully reconfigurable comparator array with a large

memory to assign comparator output codes to digital codewords. All of these

proposals attempt to compensate for the offsets so that the architecture

functions like a conventional flash ADC with an accurate set of reference
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levels. They add significant complexity to the circuit and require an extra

calibration step after production of the circuit.

1.3.2 Stochastic ADC

More recent work has directly leveraged the variations in comparator thresh-

olds rather than merely compensating for them. In [8], the reference ladder

was eliminated entirely; instead, the levels were allowed to spread randomly

and a subset was selected that matched an ideal flash architecture as closely

as possible. This approach eliminates the worst variations but requires

an extra calibration step. In [9], the comparators were assigned to only

two nominal levels with intentionally high variation. The true levels were

not measured; instead, the outputs were summed and used to compute an

estimated signal based on the offset distribution.

These designs, which directly leverage the comparator offset distributions,

anticipate a statistical approach to data conversion. To date, this problem

has been addressed primarily in the circuits and devices literature and has

been framed in terms of conventional ADC architectures and metrics, with

minimal statistical analysis. However, these architectures can be thought of

as inference systems that use observations subject to uncertainty to gather

information. In this work, we approach the problem from the perspective

of statistical detection and estimation, using information-based metrics to

predict system-level performance. We aim to provide a more mathematically

rigorous framework for data conversion with unreliable circuits.

1.3.3 Distributed sensing

The mathematical model for estimation from comparators with large varia-

tions has been studied before, but in a different context. A comparator that

compares a signal to a randomly varying threshold level is mathematically

equivalent to a sensor that takes a noisy measurement and then quantizes it

to one bit using a fixed threshold. Thus, the problem of stochastic data con-

version is equivalent to decentralized fusion in bandlimited sensor networks

using one-bit quantized observations [10, 11]. The results in [11] parallel

several results presented here: the authors find a Cramér-Rao lower bound for
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parameter estimation over a bandwidth-constrained sensor network that has

the same form as in our problem. They also explore the relationship between

estimation performance and spacing between threshold levels, arguing that

spacing on the order of the standard deviation of the noise is sufficient; we

reach the same conclusion here.

1.4 A Statistical Inference Approach

In this work, we approach the problem of data conversion with unreliable

comparators using tools from detection and estimation theory. Our system

model consists of an arbitrary number of nominal levels and sensors per

level, generalizing both the conventional flash ADC reference ladder (many

levels and one comparator per level) and the design of [9] (few levels with

many comparators). One critical difference between our analysis and that

in the circuits literature is that we do not require the converter to output

a digital codeword representing the value of the input signal; instead, we

are concerned with the information contained in the vector of comparator

outputs or in sufficient statistics of those outputs. In many applications for

which mixed-signal interfaces are used, including sensing, classification, and

signal detection, the decision-making algorithm can work with these statistics

directly. In this thesis, therefore, we will not assess converter performance in

terms of conventional metrics such as integral or differential nonlinearity or

effective number of bits. Instead, we will use information-based metrics such

as Fisher information and Kullback-Leibler divergence and application-level

metrics including mean square error and symbol error rate.

In Chapter 2, we present the stochastic data converter architecture and

describe the statistical relationship between the input signal and sensor

outputs. We use this observational model to derive expressions for the

Kullback-Leibler divergence and Fisher information, which are useful for

predicting system-level performance. In Chapter 3, we demonstrate the

performance of the converter architecture for several decision-making ap-

plications using Monte Carlo simulations. We also present a highly parallel

two-stage estimation architecture with low computational complexity and

consider the performance benefits of calibration. In Chapter 4, we discuss

the implications of the performance results for converter design.
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CHAPTER 2

SYSTEM MODEL AND ANALYSIS

In information systems, the analog signals collected by converters are often

used to make decisions. The role of the converter is to collect information

from a signal that is relevant to the particular application for which it is used.

Conventional ADCs output quantized measurements of an analog signal and

are designed to minimize mean square quantization error. Metrics such as

linearity, dynamic range, and effective number of bits do not necessarily

predict system-level performance. It is more useful to consider information-

based metrics such as Kullback-Leibler divergence and Fisher information. In

this chapter, we develop an observational model for our proposed stochastic

converter architecture and use that model to characterize performance using

these metrics.

2.1 System Architecture

We consider a data converter with a generalized flash ADC architecture,

shown in Figure 2.1. Like a conventional flash ADC, it observes an unknown

real-valued variable x using a number of binary sensors. There are n nominal

reference levels v1, . . . , vn. To compensate for uncertainty in the thresholds,

the architecture incorporates r duplicate sensors at each nominal level. Each

of the nr sensors has a random true reference level Vi,j that is offset from

its nominal level vi for i = 1, . . . , n and j = 1, . . . , r. If r = 1, then

the architecture is a conventional flash ADC with one comparator at each

nominal level. If n = 1, then the comparators are all assigned the same

nominal level, as in [9]. The architecture can be regarded as making r

trials of an n-dimensional observation vector. Our results will show that the

choice of n and r involves a tradeoff between performance and complexity:

a system with many nominal levels provides information over a broad range
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of input values, while a more parallel design improves performance without

significantly increasing complexity.

We assume that the offsets for all comparators are independent and iden-

tically distributed according to a known distribution. Furthermore, the

input x is the same for all comparators. These assumptions are reason-

able as long as the spatial correlation between offsets and the time-varying

noise on each sensor are negligible. Denote the cumulative distribution

function (CDF) of the random offsets by FV . Then each level Vi,j has

CDF Pr {Vi,j ≤ x} = FV (x− vi). For brevity, let Fi (x) = FV (x− vi) and

let F̄i (x) = 1 − FV (x− vi). Where Fi is differentiable at x, denote the

corresponding probability density function (PDF) by fi (x) = ∂
∂x
Fi (x).

Each comparator produces a binary output

Yi,j =

1, if x ≥ Vi,j

0, if x < Vi,j .
(2.1)

Let Y denote the set of these outputs for i = 1, . . . , n and j = 1, . . . , r.

These are the observations that will be used for inference about x. In most

of this analysis we assume that only one set of observations is available.

More complex systems could improve performance by estimating the offsets

using past observations; we briefly explore the performance improvements

achievable by calibration in Section 3.4.

2.2 Observational Model

Because the comparator outputs are nondeterministic, we must use statistical

inference tools to recover information about x from the observations. These

tools rely on a statistical model that relates the observed random variable Y

to the unobserved variable x.
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2.2.1 Likelihood

Given x, each Yi,j has a Bernoulli probability mass function (PMF),

pYi,j |X (1 | x) = Pr {x ≥ Vi,j} (2.2)

= Fi (x) (2.3)

pYi,j |X (0 | x) = Pr {x < Vi,j} (2.4)

= F̄i (x) . (2.5)

Because the offsets are independent and identically distributed, the rn

observations can be reduced to n sufficient statistics that preserve the in-

formation about x. For each i = 1, . . . , n, let Ti =
∑r

j=1 Yi,j. As a sum of

conditionally independent Bernoulli random variables, each Ti has a binomial

conditional distribution:

pTi|X (ti | x) =

(
r

ti

)
Fi (x)ti F̄i (x)r−ti . (2.6)

The mean of Ti is given by

E [Ti | X = x] = rFi(x) , (2.7)

where E[·] denotes the expectation. If F̄i(x) 6= 0, which is true as long as

fi(x) > 0, then the PMF can be written

pTi|X (ti | x) =

(
r

ti

)
F̄i (x)r

(
Fi (x)

F̄i (x)

)ti
. (2.8)

If F̄i(x) 6= 0, then the full vector T = {Ti}ni=1 is a sufficient statistic for Y

given x and has PMF

pT|X (t | x) =
n∏
i=1

pTi|X (ti | x) (2.9)

=
n∏
i=1

(
r

ti

)
F̄i (x)r

(
Fi (x)

F̄i (x)

)ti
. (2.10)

On the set of inputs for which Fi (x) is differentiable and fi (x) > 0, (2.10)

forms an exponential family of distributions [12]. An exponential family is a
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set of conditional probabilities parametrized by x that have the form

pT|X (t | x) = h (t) exp

(
n∑
i=1

ηi (x) ti − A (x)

)
. (2.11)

The exponential form is convenient for statistical inference problems because

the log-likelihoods, sufficient statistics, and information metrics of the obser-

vational model can be easily expressed in terms of ηi, ti, and A.

For the converter likelihood function (2.10) with F̄i(x) 6= 0, the terms

in (2.11) are h (t) =
∏n

i=1

(
r
ti

)
, A (x) = −r

∑n
i=1 ln F̄i (x), and ηi (x) =

ln
(
Fi (x) /F̄i (x)

)
. The vector η (x) = {ηi (x)}ni=1 is called the natural pa-

rameter of the family. The first derivative of ηi (x) is

η′i (x) =
fi (x)

Fi (x) F̄i (x)
. (2.12)

The natural parameter and its derivative determine a number of useful prop-

erties of exponential families for detection and estimation problems and will

be used throughout this thesis. Note that because the natural parameter η

has higher dimension than the true parameter x,
{
pT|X (· | x)

}
x

is a curved

exponential family [13]. Therefore, while T is a sufficient statistic, it may not

be a complete sufficient statistic: that is, there may exist a lower-dimensional

sufficient statistic that preserves its information.

2.2.2 Special case: The logistic distribution

Indeed, there is an offset distribution for which the likelihood belongs to a

one-dimensional exponential family. The logistic distribution with mean µ

and scale parameter β has the CDF

L (v) =
exp

(
v−µ
β

)
1 + exp

(
v−µ
β

) . (2.13)

The variance of a logistic random variable is σ2 = β2π2/3. Figure 2.2

compares the logistic distribution with the normal distribution, which is

often used to model process variations and which will be used in most of the

simulations presented here. If Fi (x) is logistic with mean vi, then the natural
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Figure 2.2: Normal and logistic distributions with unit variance. The
normal distribution is often used to model process variations. The logistic
distribution induces a convenient form on the observation likelihood.

parameter components are ηi (x) = (x− vi) /β, which are linear functions of

the true parameter x. The likelihood (2.11) can be written

pT|X (t | x) = h (t) exp

(
−

n∑
i=1

viti
β

)
exp

(
x

n∑
i=1

ti
β
− A (x)

)
. (2.14)

Then the scaled sum of all the comparator outputs, S (T) =
∑n

i=1 η
′
i (x)Ti =∑n

i=1 Ti/β, is a complete sufficient statistic and its conditional distribution

forms a one-dimensional exponential family with natural parameter x. We

will use this special case to find simple closed-form asymptotic expressions

for the information-based metrics in this chapter.

2.3 Kullback-Leibler Divergence

In a statistical inference problem, an algorithm must use observations to

choose from a set of hypotheses about an unobserved variable. To ensure

an accurate decision, the observations must contain information that distin-

guishes between different hypotheses. A useful performance metric is the

Kullback-Leibler (KL) divergence, which quantifies the discrepancy between

two probability distributions. If p1 and p2 are two PMFs or PDFs with the
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same support, then the KL divergence is defined as

D (p1‖p0) = Ep1
[
ln
p1 (T)

p0 (T)

]
, (2.15)

where Ep [·] denotes the expectation of the argument under distribution p.

Note that D (p1‖p0) 6= D (p0‖p1) in general. For the distributions considered

here, however, the divergence is symmetric, so we will restrict our attention

to D (p1 ‖ p0).

The performance of the data converter in distinguishing between values of

x depends on the KL divergence of the likelihood function. First, consider

two fixed points x0 and x1 which both lie in the support of all the level dis-

tributions for which the observations have positive likelihood. The likelihood

functions are

p0 (t) = pT|X (t | x0) (2.16)

p1 (t) = pT|X (t | x1) . (2.17)

The KL divergence can be derived using the exponential family form of

the likelihood (2.11):

D (p1‖p0) = Ep1
[
ln
pT|X (T | x1)

pT|X (T | x0)

]
(2.18)

= Ep1

[
n∑
i=1

[ηi (x1)Ti − A (x1)]−
n∑
i=1

[ηi (x0)Ti − A (x0)]

]
(2.19)

=
n∑
i=1

[(ηi (x1)− ηi (x0))Ep1 [Ti]]− (A (x1)− A (x0)) (2.20)

= r
n∑
i=1

(ηi (x1)− ηi (x0))Fi (x1) + ln
F̄i (x1)

F̄i (x0)
. (2.21)

2.3.1 High resolution limit

To assess the performance scaling of the data converter, consider a high-

resolution architecture with many closely-spaced levels. Suppose that the n

nominal levels are uniformly spaced at a distance ∆v apart from v1 to vn and

assume for simplicity that fi (x) > 0 for all i = 1, . . . , n and all x ∈ (v1, vn).

In (2.21), the divergence is the sum of a function of vi. If both sides of (2.21)
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are multiplied by ∆v then, in the limit as ∆v approaches zero, the sum can

be replaced by the Riemann integral of a function of v:

lim
∆v→0

D (p1‖p0; ∆v) ∆v = lim
∆v→0

r

n∑
i=1

[
(η (x1 − vi)− η (x0 − vi))FV (x1 − vi)

+ ln
F̄V (x1 − vi)
F̄V (x0 − vi)

]
∆v (2.22)

= r

∫ vn

v1

[
(η (x1 − v)− η (x0 − v))FV (x1 − v)

+ ln
F̄V (x1 − v)

F̄V (x0 − v)

]
dv . (2.23)

The integrand is nonnegative for all v. If v1 and vn are far from x0 and x1,

then a useful upper bound for the high-resolution KL divergence is

lim
∆v→0

D (p1‖p0; ∆v) ∆v ≤ r

∫ ∞
−∞

[
(η (x1 − v)− η (x0 − v))FV (x1 − v)

+ ln
F̄V (x1 − v)

F̄V (x0 − v)

]
dv . (2.24)

If the offsets have a logistic distribution, then (2.24) can be evaluated exactly.

Let d = x1 − x0 and let u = (v − x1)/β. Then, in the limit as ∆v → 0, the

divergence is bounded by

lim
∆v→0

D (p1‖p0; ∆v) ∆v

≤ r

∫ ∞
−∞

d
β

exp
(
x1−v
β

)
1 + exp

(
x1−v
β

) + ln
1 + exp

(
x0−v
β

)
1 + exp

(
x1−v
β

)
 dv (2.25)

= rβ

∫ ∞
−∞

[
d

β

exp (−u)

1 + exp (−u)
+ ln

1 + exp (−u− d/β)

1 + exp (−u)

]
du (2.26)

=
rβ

2

(
d

β

)2

(2.27)

=
rd2

2β
(2.28)

=
π

2
√

3

rd2

σ
. (2.29)

14



For normally distributed offsets, the equivalent integral does not have a closed

form and appears to grow slightly faster with d. For d = σ, the integral can

be computed numerically to find lim∆v→0D (p1‖p0) ∆v ≤ 0.920rd2/σ.

This bound is valid only in the limit as ∆v → 0, but it gives a useful

approximation for D(p1‖p0) even with finite resolution. If ∆v is sufficiently

small and if v1 and vn are sufficiently far from x0 and x1, then the KL

divergence is approximated by

D (p1‖p0) ≈ π

2
√

3

rd2

σ∆v
(2.30)

for offsets with the logistic distribution and by

D (p1‖p0) ≈ 0.920
rd2

σ∆v
(2.31)

for normally distributed offsets.

This approximation is most useful when x0 and x1 are far apart compared

to the spacing between nominal levels but close relative to the offset devia-

tion. Figure 2.3 shows the exact divergence as a function of ∆v for normally

distributed offsets. The plot suggest that the high-resolution approximation

(2.31) is accurate for d ≤ σ and ∆v ≤ 2σ.

2.4 Fisher Information

The KL divergence is useful for predicting performance for classification

problems in which the hypothesis space is discrete. For regression problems,

in which a continuous parameter is to be estimated, a useful metric is the

Fisher information [12]. The Fisher information quantifies the information

provided by the observations about the parameter at a particular point in

the parameter space. Subject to certain regularity conditions, the Fisher

information contributed by an observation T about the unknown parameter

x is

I (x) = −E
[
∂2

∂x2
ln pT |X (T | x)

]
. (2.32)

The Fisher information determines the achievable performance of unbiased

estimators of x, as explained in Section 3.2.

For the data converter outputs, the regularity conditions that ensure the
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Figure 2.3: KL divergence between two point distributions separated by d
for σ = 1 and r = 1. The gray curve is the high-resolution approximation
D (p1 ‖ p0) ≈ 0.920d2/∆v.

Fisher information is well-defined are satisfied for those Ti for which the

corresponding fi (x) exists and is strictly positive, that is, where the reference

level distribution has support. For those observations, the Fisher information

is given by

Ii (x) = −E
[
∂2

∂x2
ln pTi|X (Ti | x)

]
(2.33)

= E

[(
∂

∂x
ln pTi|X (Ti | x)

)2
]

(2.34)

= E

[(
∂

∂x
(ηi (x)Ti − Ai (x))

)2
]

(2.35)

= E
[
(η′i (x)Ti − η′i (x)E [Ti])

2
]

(2.36)

= (η′i (x))
2

Varx (Ti) (2.37)

= r
fi (x)2

Fi (x) F̄i (x)
. (2.38)

Because the observations are conditionally independent given x, the total

Fisher information I (x) provided by T about x is the sum of the Fisher

16
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value of x. The information is maximized when x = vi.

information Ii (x) contributed by each Ti for which the corresponding com-

parator level distribution has support:

I (x) =
∑

i:fi(x)>0

Ii (x) (2.39)

=
∑

i:fi(x)>0

r
fi (x)2

Fi (x) F̄i (x)
(2.40)

=
∑

i:fi(x)>0

rη′i (x) fi (x) . (2.41)

Those Ti for which fi (x) = 0 do not contribute Fisher information, but they

do restrict the valid space of x values. If no fi (x) > 0 for a particular x,

then the Fisher information is not defined but the observations will restrict

x to a particular interval, as in a deterministic quantizer. Figure 2.4 shows

the Fisher information contributed by a single observation for normally dis-

tributed offsets. Nearly all of the information comes from comparators with

nominal thresholds within about 3σ of x.

2.4.1 High resolution limit

We can characterize the high-resolution performance of the converter using

the approach from Section 2.3.1. Suppose that the n nominal levels are

uniformly spaced at a distance ∆v apart from v1 to vn and assume that

17



fi (x) > 0 for all i = 1, . . . , n and all x ∈ (v1, vn). In the limit as ∆v

approaches zero, the sum (2.41) becomes a Riemann integral:

lim
∆v→0

I (x; ∆v) ∆v = lim
∆v→0

n∑
i=1

rη′ (x− vi) fV (x− vi) ∆v (2.42)

=

∫ vn

v1

rη′ (x− v) fV (x− v) dv . (2.43)

This form can be used to find an upper bound in terms of the natural

parameter. Let V be a random variable distributed according to the offset

PDF fV and let u = x − v. Because the integrand is nonnegative, (2.43) is

bounded by

lim
∆v→0

I (x; ∆v) ∆v ≤ r

∫ ∞
−∞

η′ (x− v) fV (x− v) dv (2.44)

= r

∫ ∞
−∞

η′ (u) fV (u) du (2.45)

= rE [η′ (V )] . (2.46)

This asymptotic bound is a useful approximation when the Fisher infor-

mation is locally concentrated and the range of the nominal levels is large

compared to the standard deviation of the offsets. If ∆v is sufficiently small

and v1 and vn are sufficiently far from x, then the high-resolution Fisher

information is approximated by

I (x) ≈ r

∆v
E [η′ (V )] . (2.47)

For the logistic distribution, η′ (x) = 1
β

is constant, so the high-resolution

Fisher information is approximated by

I (x) ≈ r

β∆v
. (2.48)

The high-resolution Fisher information approximation will appear frequently

in our performance analysis. For offset distribution F , we denote this limit

by γF , defined as

γF (σ,∆v, r) = cF
r

σ∆v
, (2.49)

where cF = E [ση′ (V )] is a constant that depends on the distribution. For

the logistic distribution, cL = π/
√

3. For the normal distribution, cN ≈ 1.806
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Figure 2.5: Fisher information with levels evenly spaced ∆v apart and
normally distributed offsets with σ2 = 1. The gray horizontal line
represents the high-resolution approximation γN (∆v)∆v = 1.806.

by numerical integration. If cF is undefined for a particular distribution, such

as the uniform distribution, then the Fisher information curve does not have

finite area and the high-resolution approximations are not valid.

Figure 2.5 shows the exact Fisher information for normally distributed

offsets as a function of x and ∆v. The approximation (2.49) is very close

when ∆v ≤ σ. If x is considered to be random with a distribution that

is approximately uniform over scales of ∆v, then because I (x) fluctuates

around γ−1, (2.49) gives the average Fisher information even for ∆v > σ.

2.5 Additive Gaussian Noise Approximation

It can be shown [14] that the KL divergence between two normal distributions

with means spaced d apart and variance ρ2 is given by

D (q1 ‖ q0) =
d2

2ρ2
. (2.50)

The high-resolution KL divergence (2.30) has the same form, with the vari-

ance replaced by γ−1. This form suggests that we can think of the uncertainty
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introduced by the sensor offsets as equivalent to additive Gaussian noise with

variance I (x)−1.

To see why, consider the scalar statistic S (T) =
∑n

i=1 η
′
i (x)Ti. Because

S is the sum of many conditionally independent random variables, the con-

ditional density of S given x should converge to a normal distribution by

the central limit theorem. It can be seen from (2.37) that the conditional

variance of S is I (x). For the logistic distribution, the mean of S is linearly

related to x with slope I (x):

E [S (T) | x] =
n∑
i=1

rη′i (x) rFi (x) (2.51)

∂

∂x
E [S (T) | x] =

n∑
i=1

rη′i (x) fi (x) (2.52)

= I (x) . (2.53)

Therefore, S has a normal distribution with mean xI (x) plus a constant and

variance I (x). That is equivalent to a constant plus I (x) times a normally

distributed random variable with mean x and variance I (x)−1. Therefore, the

information provided by the converter output is the same as the information

in the signal corrupted by additive Gaussian noise with power I (x)−1.

While this approximation only holds exactly for the special case of logistic

offsets and in the limit as the number of sensors grows large, it is a useful rule

of thumb for predicting performance in more complicated inference problems.

For example, consider the problem of distinguishing between inputs drawn

from one of two distributions q0 (x) and q1 (x). Suppose that q0 and q1 are

normal distributions with means x0 and x1, respectively, and equal variance

ρ2. Let d = |x1 − x0|. Figure 2.6 shows the empirical KL divergence for a

high-resolution converter with offset variance σ2 and input noise power ρ2.

The KL divergence is well approximated by D (p1‖p0) = d2/2(ρ2+γN (σ2)
−1

),

indicating that the converter is equivalent to additive noise in its effect on

classification performance.

The Gaussian noise approximation can be used as a starting point to

predict performance in statistical inference applications. The next chapter

explores the performance of the stochastic data converter for detection and

estimation applications.
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CHAPTER 3

STATISTICAL INFERENCE
PERFORMANCE

The information-based metrics derived in Chapter 2 suggest that the perfor-

mance of a stochastic converter in statistical inference applications depends

on the ratio of the average density of sensor levels to the standard deviation

of the discrepancy between the true reference levels and their nominal val-

ues. In this chapter, we describe several inference applications for which a

stochastic converter might be used and evaluate performance using Monte

Carlo simulations.

3.1 Classification

In classification problems, the system must use the sensor outputs to select

one of several hypotheses or classes. Each hypothesis corresponds to a

distribution on the input signal X, represented in this section as a random

variable. Denote the distribution for class m by qm (x). The output statistics

T depend on the class indirectly through X via the likelihood function

pm (t) =

∫
qm (x) pT|X (t | x) dx . (3.1)

A typical performance metric for a classifier is the probability of classifica-

tion error, Pe = Pr {m̂ (T) 6= m} where m is the true class. If the classes

are equally likely, then Pe is minimized by the maximum likelihood (ML)

classifier, which selects the class for which the observations have the highest

log-likelihood:

m̂ (T) = arg max
m

ln pm (T) . (3.2)
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Figure 3.1: The data converter can be used to recover symbols transmitted
over a noisy analog channel.

3.1.1 Binary point classification

As a special case, consider the problem of deciding between two points x0

and x1. That is, q0 (x) = δ (x− x0) and q1 (x) = δ (x− x1). The ML decision

rule for binary classification takes the form of a likelihood ratio test,

m̂ (T) =

1, if ln p1(T)
p0(T)

≥ 0

0, else.
(3.3)

We abbreviate the binary decision rule (3.3) using the notation

ln
p1 (T)

p0 (T)

1

≷
0

0 . (3.4)

Because pm (t) = pT|X (t | xm) is an exponential family, the decision rule can

be written

ln
h (t) exp (

∑n
i=1 ηi (x1)Ti − A (x1))

h (t) exp (
∑n

i=1 ηi (x0)Ti − A (x0))

1

≷
0

0 (3.5)

n∑
i=1

(ηi (x1)− ηi (x0))Ti
1

≷
0

A (x1)− A (x0) . (3.6)

If the offsets have a logistic distribution, the rule can be simplified further to

n∑
i=1

x1 − x0

β
Ti

1

≷
0

A (x1)− A (x0) (3.7)

S(T)
1

≷
0

A (x1)− A (x0)

d
. (3.8)

3.1.2 Symbol detection in noise

An important classification application for which ADCs are often used is

symbol detection in communication receivers. Consider a simple ampli-
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tude modulated signal with an alphabet of M equally-probable information

symbols x1, . . . , xM , spaced d apart. These symbols are passed through a

communication channel and corrupted by additive Gaussian noise with power

ρ2, as shown in Figure 3.1. The received signalX therefore has a conditionally

normal distribution with mean xm and variance ρ2.

If the received signal can be measured exactly, then the ML decision rule

is to choose the xm closest to X. The expected error probability for the ML

detector is

Pe,ideal =
2M − 2

M
Q

(
d

2ρ

)
, (3.9)

where Q is the complementary standard normal CDF.

If, instead, the symbols are measured by a stochastic data converter, there

will be additional uncertainty from the observations and the error probability

will be higher. If the converter can be thought of as additive Gaussian noise

with power γ−1, as proposed in Section 2.5, then the error probability would

be

Pe =
2M − 2

M
Q

(
d

2
√
ρ2 + γ−1

)
. (3.10)

3.1.3 Simulated performance

To demonstrate the symbol detection performance of the converter, a com-

munication link was simulated with an alphabet of M = 16 symbols spaced

d = 0.5 apart. The symbols were transmitted over a Gaussian noise channel

with noise power ρ2 and received by a stochastic data converter with nominal

levels spaced ∆v = 0.1 apart, normally distributed offsets with variance σ2,

and r = 8 sensors per nominal level. In the receiver, an ML decision rule

uses the observations T directly to select the most likely transmitted symbol;

there is no intermediate estimation step. The empirical error probability was

computed over all symbols for 4000 sets of random levels with 100 samples

each of random channel noise.

The error rate of the ML detector is shown in Figure 3.2. For low signal-

to-noise ratios (SNR), the error rate is similar to that of a receiver with

an ideal ADC, while the high SNR performance is limited by the converter

offset variance. Figure 3.3 shows the same data plotted against an effective

signal-to-noise ratio, where the stochastic converter is treated as additive
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Figure 3.2: Simulated error probability for detecting noisy symbols with a
stochastic data converter. The gray lines show the noise-free error rate for
each value of the offset variance, σ2.

white Gaussian noise with power γ−1. The simulation data closely match

the error probability predicted by (3.10), suggesting that the Gaussian noise

approximation is useful for this problem.

3.2 Regression

In classification problems, the classes are chosen from a finite set. If instead

we are interested in a continuous-valued parameter, we must use regression.

In this section we consider the problem of measuring the input signal using

the observations, so that the parameter of interest is X itself. For this

problem we wish to minimize the mean square error, defined as

MSE (x̂) = E
[
(x̂ (T)−X)2] . (3.11)

If the distribution of X is known, then the MSE can be computed exactly.

Furthermore, the minimum mean square error (MMSE) estimator is given

by

x̂MMSE (T) = E [X | T] . (3.12)
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If the prior distribution of X is not known, then it is useful to consider the

variance of the estimator at particular points:

Varx (x̂(T)) = Var (x̂ (T) | X = x) . (3.13)

The variance can be made arbitrarily low for biased estimators. An esti-

mator is called biased if E [x̂ (T) | X] 6= X. An estimator is unbiased if

E [x̂ (T) | X] = X. For any unbiased estimator x̂UE, the Cramér-Rao lower

bound (CRLB) [12] on the conditional variance is

Varx (x̂UE(T)) ≥ I (x)−1 . (3.14)

An unbiased estimator that achieves this bound with equality is called effi-

cient.

One commonly used estimator is the maximum likelihood estimator (MLE),

defined by

x̂ML (T) = arg max
x

ln pT|X (T | x) . (3.15)

The MLE is neither unbiased nor efficient in general, but often achieves good

performance in practice.
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3.2.1 Maximum likelihood estimator

We now derive the MLE for x based on the stochastic converter outputs.

To ensure that the parameter is identifiable, we take the maximization over

the set X (T) =
{
x : pT|X (T | x) > 0

}
. If x is identifiable, i.e., X (T) is not

empty, the MLE is

x̂ML (T) = arg max
x

pT|X (T | x) (3.16)

= arg max
x∈X (T)

∏
i:fi(x)>0

pTi|X (Ti | x) (3.17)

= arg max
x∈X (T)

∑
i:f(x)>0

ln pTi|X (Ti | x) . (3.18)

Since the log-likelihood function for an exponential family is concave, the

MLE is the unique solution to the likelihood equation

0 =
∑

i:fi(x)>0

∂

∂x
ln pTi|X (Ti | x) . (3.19)

Because
{
pT|X (· | x)

}
x

is an exponential family of the form (2.11), the deriva-

tive of the log-likelihood is given by

∑
i:fi(x)>0

∂

∂x
ln pTi|X (Ti | x) =

∑
i:fi(x)>0

η′i (x)Ti − A′(x) (3.20)

=
∑

i:fi(x)>0

η′i(x)Ti −
∑

i:fi(x)>0

r
fi(x)

F̄i(x)
(3.21)

=
∑

i:fi(x)>0

η′i(x)Ti −
∑

i:fi(x)>0

rη′i(x)Fi(x) . (3.22)

Therefore, using (2.7), the likelihood equation can be written∑
i:fi(x)>0

η′i (x̂ML)Ti =
∑

i:fi(x)>0

η′i (x̂ML) rFi (x̂ML) (3.23)

∑
i:fi(x)>0

η′i (x̂ML)Ti =
∑

i:fi(x)>0

η′i (x̂ML)E [Ti | X = x̂ML] . (3.24)

The likelihood equation (3.24) can often be solved numerically for arbitrary

offset distributions. If the offsets have a logistic distribution, the equation
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can be simplified in terms of the sufficient statistic:

S (T) = E [S (T) | X = x̂ML] . (3.25)

In the high-resolution limit, the mean of the statistic S can be expressed as

an integral:

lim
∆v→0

E [S (T) | X = x] ∆v =
r

β

∫ vn

v1

FV (x− v) dv . (3.26)

Making the substitution u = x− v yields

lim
∆v→0

E [S (T) | X = x] ∆v =
r

β

∫ x−v1

x−vn
FV (u) du (3.27)

=
r

β

∫ x−v1

x−vn

exp
(
u
β

)
1 + exp

(
u
β

) du (3.28)

= r ln
1 + exp

(
x−v1
β

)
1 + exp

(
x−vn
β

) . (3.29)

If ∆v is sufficiently small and x is sufficiently far from v1 and vn, the mean

is well approximated by the linear relationship

E [S(T)] ≈ r

β∆v
(x− v1) (3.30)

= γL (x− v1) (3.31)

and the MLE approaches the linear estimator

x̂ML (S (T)) = v1 + γ−1
L S (T) (3.32)

= v1 +
∆v

r

n∑
i=1

Ti . (3.33)

In the high-resolution, high-range limit for logistic offsets, the MLE is a linear

function of the total number of threshold exceedances. It is straightforward

to verify that this estimator is efficient.
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Figure 3.4: Simulated mean square error as a function of offset variance for
the MLE with n = 128 and normally distributed offsets.

3.2.2 Simulated performance

The theoretical results for estimation performance were verified using Monte

Carlo simulations of the converter architecture for a traditional analog-to-

digital conversion application. The input signal is drawn from a uniform

distribution with unit variance. The converter is designed with n nominal

levels uniformly spaced distance ∆v =
√

12/ (n− 1) apart. The comparator

outputs are used to compute the MLE x̂ML of x. The performance metric

is the MSE of the estimate averaged over all inputs and all realizations of

the converter offsets. For each data point, 600 sets of offsets were randomly

generated from a normal distribution with mean 0 and variance σ2.

Figure 3.4 shows the MSE performance of the MLE as a function of the

offset variance for a converter with n = 128. The sample MSE is close to the

high-resolution CRLB approximation, γ−1
N , as long as σ2 > ∆v2. It is close

to the quantization error of an offset-free quantizer (1.1) when σ2 � ∆v2.

When r > 1 and σ2 < ∆v2, larger offsets improve the MSE performance

through a dithering effect. Performance degrades for σ2 > 1 because the

levels fall outside the range of the input signal.

Figure 3.5 shows the MSE performance as a function of the number of

nominal levels n and the number of observations per level r. As long as n
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is sufficiently large that ∆v < σ, the MSE is inversely proportional to both

n and r. That is, when the level distributions overlap significantly between

nominal levels, performance depends on the total number of comparators in

the system.

3.3 A Multistage Measurement Architecture

For a high-resolution converter with a large input range, the number of

sensors may be large. However, for any given input, only a subset of the

sensors contribute meaningful information about the parameter. To reduce

the complexity of the system, the statistical estimation procedure can be

split into two stages, as illustrated in Figure 3.6. In the first stage, a low-

resolution detector forms a rough estimate of the input signal. This rough

estimate is used to select a subset of the outputs from sensors with nominal

levels close to the signals.

This architecture simplifies the inference stage by reducing the dimen-

sionality of the sufficient statistic. Furthermore, while the full likelihood

function can be difficult to analyze for non-logistic offset distributions, the

likelihood tends to be locally well-behaved. In particular, for the set of

outputs of sensors with nominal levels close to x and under appropriate

regularity conditions, the derivative of the log-likelihood function can be
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Figure 3.6: The two-stage estimation architecture includes a low-resolution
detector and a linear estimator.

closely approximated by a linear function of x. In this section, we apply this

approximation to the signal measurement problem and find a simple linear

estimator that can perform nearly as well as the full MLE in a two-stage

architecture.

3.3.1 Local linear estimator

In Section 3.2.1, we showed that for a logistic offset distribution, the MLE is

efficient. That is not true in general for other distributions. However, we can

find a linear estimator of a form similar to (3.32) using a local approximation.

Suppose that x is known to be close to a point x0. Then we can locally

approximate ηi (x) by η′i (x0) (x− vi) and Fi (x) by Fi (x0) + fi (x0) (x− x0).

With these approximations, the likelihood equation (3.24) becomes

n∑
i=1

η′i (x0)Ti ≈
n∑
i=1

η′i (x0) r (Fi (x0) + fi (x0) (x− x0)) (3.34)

n∑
i=1

η′i (x0) (Ti − rFi (x0)) ≈
n∑
i=1

rη′i (x0) fi (x0) (x− x0) . (3.35)

Substituting (2.41), we have

n∑
i=1

η′i (x0) (Ti − rFi (x0)) ≈ I (x0) (x− x0) . (3.36)
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Solving this approximate likelihood equation gives x̂LL, the local linear esti-

mator:

x̂LL (T, x0) = x0 + I (x0)−1
n∑
i=1

η′i (x0) (Ti − rFi (x0)) . (3.37)

If x0 = x, then x̂LL is unbiased and efficient, as in the logistic case. Otherwise,

the estimator has higher variance and may be biased. Its performance

depends on the accuracy of the initial estimate x0.

3.3.2 Estimation with a subset of statistics

The linear estimator (3.32) is a function of the full observation statistic vector

T. However, for many unimodal distributions, only a subset of the statistics

contribute significantly to the estimate, as shown by Figure 2.4. For normally

distributed offsets, more than 99% of the Fisher information is contributed by

sensors with nominal levels within 3σ of x. We therefore restrict our attention

to the n∗ sensors with nominal levels closest to x0. Let T∗ denote this length-

n∗ subset of T. For the remainder of this section, we relabel Fk, F̄k, fk, ηk,

and Ik to correspond to the elements Tk of T∗. It is assumed that fk (x0) > 0

for k = 1, . . . , n∗. The Fisher information for T∗ is I∗ (x) =
∑n∗

k=1 Ik (x). On

this subset, the local linear estimator (3.37) becomes

x̂LL (T∗, x0) = x0 + I∗ (x0)−1
n∗∑
k=1

η′k (x0) (Tk − rFk (x0)) . (3.38)

The bias and variance of x̂LL depend on the initial estimate x0. The

conditional mean of x̂LL for uniformly spaced levels and normal offsets is

shown in Figure 3.7. The conditional variance is shown in Figure 3.8. The

estimator is minimum variance unbiased when x0 = x. Both the bias and

variance increase as x0 grows farther from x. To achieve good performance,

therefore, the coarse estimator should be well within one standard deviation

of the true parameter.
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Figure 3.7: Mean of the local linear estimate with x0 = 0 for closely spaced
uniform levels and normally distributed (0, σ2) level offsets. The dashed
line represents an unbiased estimator.
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3.3.3 Simulated performance

We will demonstrate the performance of the proposed two-stage architecture

using a simulated example. The n nominal references are uniformly spaced

∆v = 1/ (n− 1) apart from 0 to 1. The sensors have normally distributed

offsets with mean 0 and σ = 0.05. For the low resolution detector, we use

the sum of the first output at each level,

x0 (Y) = v1 + ∆v
n∑
i=1

Yi,1 . (3.39)

The local linear estimator uses a subset of outputs with nominal levels within

±δ of x0, or the nearest two levels if there are no levels within ±δ. If x is near

the boundaries of the level range, fewer levels are included and the weights

are normalized accordingly.

In the Monte Carlo simulation, the number of levels was varied from n = 4

to 250 and the range parameter was varied from δ = 0.025 to 0.150. For

each configuration, 2000 input signals were drawn uniformly at random from

[0, 1] and 2000 sets of offsets were drawn from the normal distribution with

σ = 0.05. For comparison, each signal was also estimated using the MLE

with the full vector of observations. The results, shown in Figure 3.9, are

averaged over all inputs and all sets of offsets.

The simulation results confirm that the two-stage estimator performs nearly

as well as the MLE and close to the CRLB as long as the spacing between

nominal levels is small compared to σ. The size of the subset is a tradeoff

between complexity and performance. If the range is too narrow, more

observations will be required to achieve the desired level of performance and

the estimator will be more sensitive to error in the initial estimate. On the

other hand, there is little benefit to including observations for sensors whose

levels are far from the signal. Figure 3.9 suggests that the range should be

at least one standard deviation to achieve reasonable performance.

This architecture is best suited to systems where the offset deviation

is small compared to the input range but large compared to the desired

error. Then the linear estimator performs nearly as well as a more complex

MLE. The choice of design parameters depends on the estimate of the offset

deviation σ. If the assumed value of σ is too high, the levels may be spaced

too far apart. If it is too low, the coefficients will be too large. Thus, it

34



10−5

10−4

10−3

M
ea

n
sq

u
ar

e
er

ro
r

Low resolution detector
Maximum likelihood
Two stage estimator
Asymptotic CRLB

101 102

10−5

10−4

10−3

n

M
ea

n
sq

u
ar

e
er

ro
r

δ = 0.025
δ = 0.050
δ = 0.100
δ = 0.150
Asymptotic CRLB
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is best to use a conservative estimate of σ to choose the level spacing and

a generous estimate to set the coefficients. If the true value of σ is smaller

than the assumed value, the estimator variance will be worse than the best

achievable performance but better than the designed performance.

3.4 Calibrated Measurement

The analysis presented in the previous sections is for inference with unknown

random levels. This model is useful for time-varying uncertainties such as

sensor noise. However, offsets due to process variation can generally be

considered static. It should therefore be possible to measure the offsets or

to learn them over time; then the converter would become a nonuniform

quantizer. In this section, we consider estimation performance for a con-

verter where the levels are randomly generated but are known exactly to the

estimator. We can thereby find the best-case performance of an inference

system that accounts for the static nature of the offsets. An advantage of

this formulation is that we can consider nonuniform distributions of nominal

levels and nonuniform input distributions. In this section, the input X is

considered a random variable with a known PDF fX (x).

3.4.1 Mean square error

Because the levels are assumed to be measured, we can express the mean

square error of the estimator in terms of the order statistics, V(1) ≤ V(2) ≤
· · · ≤ V(N), of the levels. Here N = nr is the total number of sensors. For

convenience of notation, define V(0) to be the infimum of the support of X

and V(N+1) to be the supremum of the support of X. Let Z =
∑n

i=1 Ti be

the total number of exceedances. The MMSE estimator for a quantizer with

known levels is

x̂MMSE (Y) = E
[
X | V(Z) ≤ X < V(Z+1)

]
. (3.40)

If fX (x) is uniform on [V(Z), V(Z+1)) then the MMSE estimate is simply the

midpoint of the interval.

The mean square error achievable by this quantizer for a given set of levels
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is

MSE (V) =
N∑
z=0

Var
(
X | V(z) ≤ X < V(z+1)

)
Pr
{
X ∈ [V(z), V(z+1))

}
. (3.41)

If fX (x) is slowly varying so that it can be assumed to be approximately

constant on each interval [V(z), V(z+1)), the MSE is approximated by

MSE (V) ≈
N∑
z=0

(
V(z+1) − V(z)

)2

12
fX
(
V(z)

) (
V(z+1) − V(z)

)
(3.42)

=
N∑
z=0

fX
(
V(z)

) (V(z+1) − V(z)

)3

12
. (3.43)

The average MSE over all realizations of the stochastic converter is the

expectation of (3.43). This expectation can be evaluated in closed form for

the special case that bothX and all Vi,j are drawn from a uniform distribution

on an interval of length ∆x. In that case,

MSE (∆x) =
1

12∆x

N∑
z=0

E
[(
V(z+1) − V(z)

)3
]
.

It can be shown by integration that the third moment of intervals between

uniform order statistics is (∆x)3 (N+3
N

)−1
. Therefore we have

MSE (∆x) ≈ 1

12∆x

N∑
z=0

(∆x)3

(
3!N !

(N + 3)!

)
(3.44)

=
(∆x)2

12
(N + 1)

(
6

(N + 1)(N + 2)(N + 3)

)
(3.45)

=
(∆x)2

2(N + 2)(N + 3)
. (3.46)

For a deterministic quantizer with N levels spaced uniformly at a distance

∆v = ∆x/(N + 1) apart, the MSE from (1.1) would be

MSEideal (∆x) =
(∆x)2

12(N + 1)2
. (3.47)

For large N , therefore, the MSE of a uniform stochastic quantizer is roughly

six times larger than that of a deterministic quantizer.
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3.4.2 High resolution limit

If the converter has a large number of reference levels that are closely spaced,

then the MSE can be approximated by an integral, known as the distortion

integral [15]. We first derive the distortion integral for the deterministic

case. Suppose that the levels are nonuniformly distributed according to a

density of Nλ (x) levels per unit length. That is, the spacing between levels

near x is 1/(Nλ (x)). We first partition the quantizer range into intervals

[xm, xm+1), m = 1, . . . ,M , let δxm = xm+1 − xm, and assume that the levels

are dense enough that both λ (x) and fX (x) can be considered constant on

each interval. Taking the average of the MSE over each interval using (3.47)

and letting δxm → dx so that the sum becomes an integral, the distortion is

MSEideal =
M∑
m=1

Pr {X ∈ [xm, xm+1)} δx2
m

12 (Nλ (xm) δxm)2 (3.48)

≈ 1

12N2

M∑
m=1

f (xm)λ (x)−2 δxm (3.49)

≈ 1

12N2

∫ ∞
−∞

f (x)λ (x)−2 dx . (3.50)

For the nondeterministic case, replace the deterministic density λ (x) by

the average probability density (λ ? fV ) (x), where fV is the offset pdf and

? denotes convolution, and multiply the MSE of each interval by six to

account for the randomness of the levels. Then the distortion integral for

the stochastic converter is

MSE ≈
M∑
m=1

Pr {X ∈ [xm, xm+1)} δx2
m

2 (N (λ ? fV ) (xm) δxm)2 (3.51)

≈ 1

2N2

∫ ∞
−∞

f (x) ((λ ? fV ) (x))−2 dx . (3.52)

This approximation is useful for high-resolution quantizers where the off-

sets are large compared to the spacing between nominal levels so that the

levels can be considered to have a smooth average density. Notice that the

offset density affects the mean square error only by filtering the nominal den-

sity. If the nominal density is fairly uniform, then the particular distribution

of the offsets is irrelevant. Furthermore, the variance of the offsets does not

appear in (3.52) except as a constant factor of six, whereas it directly affects
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Figure 3.10: Simulated MSE performance of an MMSE estimator with
uniformly distributed inputs. There are n = 128 nominal levels with r = 16
sensors per level and either uniformly or normally distributed offsets.

the performance of the non-calibrated estimator.

3.4.3 Simulated performance

In this section, we compare the simulated performance of two MMSE estima-

tors, one that is given the exact values of the random levels and one that is

not. The input was drawn from a uniform distribution. The non-calibrated

estimator computes the MMSE estimate using the observation likelihood and

the known uniform input density; it is equivalent to the MLE from Section

3.2. The calibrated estimator uses (3.40) and selects the midpoint of the

interval containing the input. The simulation results shown here used 600

sets of levels and 512 random inputs.

Figure 3.10 compares the performance of the calibrated and non-calibrated

estimators as well as an ideal quantizer. The MSE of the non-calibrated

estimator increases with σ and is close to the high-resolution CRLB. The

calibrated estimator has nearly constant MSE for σ > ∆v. The calibrated

MSE is about six times larger than that of an ideal quantizer, as expected.

The error of both estimators increases rapidly for σ > x because the levels
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fall outside the signal range.

Figure 3.11 shows the scaling of both estimators with n and r. For n large

enough that σ > ∆v, the MSE of the non-calibrated estimator is inversely

proportional to N . The MSE of the calibrated estimator scales as 1/N2,

much like a deterministic quantizer. Thus, if the true levels can be measured

or estimated, the MSE performance of the stochastic converter is roughly a

constant factor worse than that of an ideal quantizer.
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CHAPTER 4

CONCLUSIONS

The analysis and simulation results presented in this thesis suggest that the

performance of a high-resolution stochastic data converter depends on the

ratio of the average density of sensor levels to the standard deviation of the

level offsets. As a rule of thumb for predicting performance, the uncertainty

in the stochastic converter can be thought of as additive Gaussian noise with

power proportional to σ∆v/r. The analytic results of Chapter 2 show that

this approximation holds in the high-resolution limit. The simulation results

of Chapter 3 suggest that it is a good approximation as long as the level

distributions overlap significantly, i.e. σ > ∆v.

4.1 Stochastic Data Converter Design

The design parameters for the data converter architecture presented here are

the number of levels and their nominal values, the number of sensors per

level, and the variance of the offsets. To design a high-resolution converter

using a number of sensors with fixed offset variance, the designer should first

select enough nominal levels that ∆v > σ. If the offsets are small relative

to the spacing, then the design is similar to a conventional quantizer and

there is little benefit to adding multiple sensors per level. Once the levels

are dense enough that the distributions overlap, performance depends on the

total number of sensors. Thus, performance can be improved by replicating

the existing sensor array rather than adding new levels. This strategy also

simplifies the design of the inference algorithm because the dimension of the

sufficient statistic T does not increase with r.

The majority of the simulation results in this thesis are for the traditional

ADC problem of measuring an input signal. However, the proposed architec-

ture is well suited to any statistical decision-making problem. Conventional
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ADCs make hard decisions to produce a single discrete representation of an

input signal. The stochastic converter outputs a soft decision in the form of

a vector of sufficient statistics. These statistics have well defined likelihood

functions that can be used directly in soft-input inference algorithms such as

maximum likelihood detection. The inference algorithms must then account

for the uncertainty in the converter as well as the uncertainty in the input

signal itself.

One difficulty in using the output vector for inference is its high dimension.

A conventional quantizer outputs a single symbol to encode a quantization

cell; the stochastic converter outputs a length-n vector of integers. Section

3.3 showed that a two-stage design can be used to reduce the dimension of

the output statistic. If the converter makes an initial rough estimate, it can

narrow the output to a few statistics with high information content.

4.2 Advantages and Limitations of Stochastic Data

Conversion

The stochastic converter is useful in applications for which reliable sensors are

unavailable or costly. The converter can be built with lower-cost or lower-

yield sensors because each individual sensor can behave unreliably. This

advantage is critical for emerging circuit technologies that could substantially

improve efficiency at the cost of reliability. By averaging over many mea-

surements, the converter can achieve reliable average-case performance from

unreliable components. On the other hand, because the sensor characteristics

are random, the worst-case performance can be arbitrarily poor. If an

application calls for worst-case performance guarantees, such an architecture

would not be appropriate.

The stochastic converter also reduces design complexity in some ways.

Unlike most previously proposed designs for quantization with highly vari-

able comparators, the architecture proposed here requires no calibration

after production. There is no dedicated error correction logic; instead, the

uncertainty is accounted for by the inference algorithm that processes the

converter output. The design is easily scaled: if a higher level of performance

is required, the designer can simply replicate the existing circuit several

times and combine the outputs. As long as the offsets are independent,
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replication is as effective as designing new sensors. The two-stage architecture

from Section 3.3 relies on highly parallel linear operations, an important

advantage in applications for which latency is critical. On the other hand,

the redundancy in the converter significantly increases the number of sensors

required compared to a conventional quantizer. The speed and efficiency of

the design comes at the expense of area.

4.3 Stochastic Data Conversion for Emerging Inference

Applications

This thesis presented a novel architecture for stochastic data conversion. We

have generalized previously proposed designs and used a novel statistical

inference approach to develop and analyze a mathematical model of data

conversion. Our analysis provides new asymptotic performance bounds and

design criteria that will be useful to system designers. Some analysis remains

to be completed; in particular, we would like to model estimation perfor-

mance over sequences of observations made with fixed offsets. The analysis

of Section 3.4 suggests that if the fixed offsets were perfectly estimated, then

performance is a constant factor worse than that of a deterministic quantizer.

It is an open research problem to model the performance of the architecture

with incomplete knowledge of the true levels.

The results presented here are based on analysis and high-level simulations.

To build practical systems, the models should be verified by experimental re-

sults. The next stage in research is to build and analyze prototype devices and

then integrate them into complete systems. Because most decision-making

systems are designed to use hard quantized outputs, existing algorithms must

be modified to take advantage of the soft output statistics of the stochastic

converter. By designing mixed-signal interfaces from the system level and

exploiting the natural variation in device characteristics, we can use emerging

device technologies to build reliable systems from unreliable components.
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