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Abstract We describe a statistical inference approach for
designing signal acquisition interfaces and inference sys-
tems with stochastic devices. A signal is observed by an
array of binary comparison sensors, such as highly scaled
comparators in an analog-to-digital converter, that exhibit
random offsets in their reference levels due to process vari-
ations or other uncertainties. These offsets can limit the
performance of conventional measurement devices. In our
approach, we build redundancy into the sensor array and use
statistical estimation techniques to account for uncertainty
in the observations and produce a more reliable estimate of
the acquired signal. We develop an observational model and
find a Cramér-Rao lower bound on the achievable square
error performance of such a system. We then propose a two-
stage inference architecture that uses a coarse estimate to
select a subset of the sensor outputs for further process-
ing, reducing the overall complexity of the system while
achieving near-optimal performance. The performance of
the architecture is demonstrated using a simulated prototype
for parameter estimation and symbol detection applications.
The results suggest the feasibility of using unreliable com-
ponents to build reliable signal acquisition and inference
systems.
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1 Introduction

This paper addresses the problem of statistical decision
making using sensors that exhibit uncertainty in their behav-
ior. In particular, we are concerned with a sensor array that
measures an unknown variable by comparing it to a num-
ber of reference levels, such as a flash analog-to-digital
converter (ADC) that measures a voltage using a series
of electronic comparator circuits. The sensors do not have
fixed known reference levels; instead, the levels vary ran-
domly around a nominal reference level. Such sensors may
have advantages in size, power, speed, or cost compared to
more reliable sensors, but cannot be used in conventional
deterministic architectures. We propose an alternative archi-
tecture that leverages redundancy and statistical inference
techniques to build reliable inference systems from such
unreliable components.

An important motivation of this work is electronic mixed-
signal interfaces built with emerging circuit technologies
that exhibit larger behavioral uncertainty than conventional
technologies. High-speed analog-to-digital converter cir-
cuits, for example, are often limited in speed and power by
large comparator circuits. Smaller circuits generally oper-
ate faster and consume less power, but are more sensitive
to process variations. Small comparators may exhibit uncer-
tain offsets to their reference levels, in part, because of
mismatch between transistor threshold voltages [1]. These
voltage variations, which can be caused by dopant fluctua-
tions during production, are generally modeled as having a
normal distribution with variance inversely proportional to
the gate area [2]. If the random offsets are large compared
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to the spacing between nominal reference levels, they can
cause errors in the output of a conventional converter.

There have been a number of proposed designs for ADCs
using comparator circuits with large offsets. Since the off-
sets are generally static with time, they can be corrected
using analog offset cancellation [3] or digital techniques,
such as disabling comparators with large offsets [4] or using
extra logic for error correction [5]. These designs all correct
or compensate for the offsets so that the converter behaves
more like a conventional flash ADC. Other recent work has
directly leveraged the offset statistics rather than compen-
sating for them. In [6], many comparators were produced
with intentionally large variations and only a few were cho-
sen to create a reference ladder. The comparators in [7] were
also designed to be highly variable, but the true levels were
not measured; instead, the outputs were averaged to produce
an estimate based on the offset statistics.

Although this problem has been addressed primarily in
the circuits literature, it can be framed as a more general
statistical inference problem: there is an unknown param-
eter (the input voltage) that is observed indirectly using a
set of uncertain observations (sensor outputs) whose statis-
tics depend on that parameter. We can therefore apply tools
from parameter estimation and machine learning to design
a robust inference architecture that incorporates and even
exploits device-level uncertainty. The results presented here
do not apply only to quantization circuits, but to any prob-
lem in which a parameter is observed via uncertain binary
thresholds. Indeed, the mathematical model developed in
Section 2 is equivalent to a distributed estimation system
subject to bandwidth constraints [8, 9]. The results in [9]
for parameter estimation over a bandlimited sensor network
parallel the results presented here, including the form of the
Cramér-Rao lower bound. A key advantage of a statistical
inference approach is that it can be applied at the system
level: if the sensor array is to be used as a front-end to a
decision-making system, such as a classifier, the array out-
puts can be used directly for inference; there is no need to
design a separate quantizer and classifier.

In this paper, which expands on results first presented
in [10], we consider a general architecture with an abitrary
number of nominal levels and of sensors per level, gener-
alizing both the conventional flash ADC (many levels with
one sensor per level) and the design of [7] (few levels with
many sensors each). We develop an observational model
that relates the array outputs to the input parameter and the
offset statistics, then use this model to predict the achievable
performance of an optimal parameter estimator. Because
one motivation of using unreliable sensors is to improve
speed and efficiency, it may not be practical to use such
an optimal estimator; fortunately, the statistical model sug-
gests an effective strategy for approximate inference using
a multistage design. We will show how the sensor outputs

can be reduced to a vector of sufficient statistics and then
further reduced to a scalar statistic with little loss of infor-
mation. This design takes advantage of the device statistics
with relatively small computational overhead.

2 System Model

The sensor array architecture is shown in Fig. 1. The array
observes an unknown real-valued variable x using a number
of binary sensors. There are r sensors at each of n nomi-
nal reference levels v1, . . . , vn. Each sensor has a random
reference level Vi,j that is offset from its nominal reference
level vi for i = 1, . . . , n and j = 1, . . . , r . If r = 1, then
the architecture is a conventional reference ladder with one
sensor assigned to each level. If n = 1, then all of the sen-
sors are identical, as in [7]. The choice of n and r enables a
tradeoff between performance and complexity.

The offsets are assumed to be independent and iden-
tically distributed with a known cumulative distribution
function (CDF) FV . This assumption is reasonable as long
as the spatial correlation in offsets and the independent
noise on each sensor are small compared to the offsets.
For comparator circuits, the offsets are often assumed to
be normally distributed and the numerical results, figures,
and simulations in this paper will use a normal distribu-
tion; however, the analytical results are derived for arbitrary
offset distributions.
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Yn,1

Yn,r

Y1,1

Y1,r

Tn

T1

vi
x

offset Vi, j
Yi, j

Figure 1 The sensor array (top) uses r binary comparison sensors at
each of n nominal reference levels. Each sensor (bottom) has a random
offset to its reference level. The sum of outputs at each nominal level
is a sufficient statistic for x.
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Each sensor has a binary output Yi,j = 1 if x ≥ Vi,j and 0
otherwise. The set of Yi,j for i = 1, . . . , n and j = 1, . . . , r
is the observed data to be used for inference about x. Each
Yi,j has a Bernoulli probability mass function (PMF):

pYi,j |X (1 | x) = Pr
{
x ≥ Vi,j

}
(1)

= Pr {x ≥ vi + V } (2)

= Pr {V ≤ x − vi} (3)

= FV (x − vi) . (4)

For brevity, define Fi (x) = FV (x − vi). Similarly,
F̄i(x) = pYi,j |X (0 | x) = 1 − FV (x − vi). When Fi is
differentiable at x, denote the probability density function
(PDF) by fi (x) = ∂

∂x
Fi (x). These nr binary observations

and the corresponding PMFs can be used to estimate x.
However, for high-resolution systems with many sensors,
it may be impractical to use the full set of nr-dimensional
data. Fortunately, the dimensionality of the observation
can be significantly reduced by making some reasonable
assumptions about the system.

Because the sensors all have independent and identically
distributed random offsets, the observations can be reduced
to an n-dimensional sufficient statistic T that fully preserves
the information about x. Let Ti = ∑r

j=1 Yi,j for i =
1, . . . , n. As the sum of independent Bernoulli variables,
each Ti has a binomial conditional PMF:

pTi |X (ti | x) =
(

r

ti

)
Fi (x)ti F̄i (x)r−ti . (5)

The conditional mean of Ti is given by

Ex [Ti] = rFi (x) , (6)

where Ex [·] denotes the conditional expectation given x,
and its conditional variance is

Varx (Ti) = rFi (x) F̄i (x) . (7)

Because each Ti is conditionally independent given x,
the PMF of the total observation is the product of these
PMFs for i = 1, . . . , n. If the offset density has finite sup-
port, as in Fig. 2, then it is possible that some or many of
the Ti are deterministic; in particular, if Fi (x) = 1 then
Ti = r and if Fi (x) = 0 then Ti = 0. These components
provide information by restricting the range of x for which
the observation has nonzero probability, but do not other-
wise contribute to the conditional PMF. For the remaining
components whose level densities have support at x, and

v1 v2 v3 x v4 v5 v6

Figure 2 If the offset distributions have finite support, then only lev-
els with support at x (bold curves) contribute to the PMF; the other
observations are deterministic given x.

therefore satisfy F̄i (x) �= 0, the PMF can be expressed in
exponential form as

pT|X (t | x) =
∏

i:F̄i (x)�=0

(
r

ti

)
F̄i (x)r

(
Fi (x)

F̄i (x)

)ti

(8)

= h (t) exp

⎧
⎨

⎩

∑

i:F̄i (x)�=0

tiηi (x) − Ai (x)

⎫
⎬

⎭
, (9)

where h (t) = ∏n
i=1

(
r
ti

)
, Ai (x) = −r ln F̄i (x), and

ηi (x) = lnFi (x) /F̄i (x) . (10)

If Fi is differentiable at x and fi (x) > 0 for all i included
in the sum, then (9) forms a curved exponential family [11]
with natural parameter η (x).

Although T is a sufficient statistic, it may not be a
complete sufficient statistic; that is, there may exist a lower-
dimensional statistic that also preserves the observed infor-
mation about x. This is the case, in particular, when each
ηi (x) is a linear function of x. If ηi (x) = aix + bi , then the
PMF can be expressed

pT|X (t | x) = h (t) exp

{
n∑

i=1

aixti + biti − Ai (x)

}

(11)

= h∗ (t) exp

{(
n∑

i=1

aiti

)

x − Ai (x)

}

, (12)

where the terms containing bi have been absorbed into
h∗ (t). By the completeness theorem for exponential fami-
lies [12], the sum S = ∑n

i=1 aiTi is a complete sufficient
statistic. The natural parameter has a linear form if the ran-
dom offsets have a logistic distribution; in that case, the
sum of the outputs of all the sensors is a complete suffi-
cient statistic and the observations can be represented by this
scalar with no loss of information about x. In Section 5, we
will use this special case to find approximate estimators for
more general distributions.

3 Statistical Inference

In many inference applications, the system is designed to
infer the value of x using the observations from the sensor
array. There are several metrics that can be used to charac-
terize the performance of the inference system. If x is known
to take values in a discrete set, such as a finite alphabet of
symbols, then we are often concerned with the probability
of detection error. If x is drawn from a continuous set, then
we often evaluate the performance of an estimator x̂ (T)

at a particular value of x by the bias, Ex

[
x̂ (T) − x

]
,and

variance, Varx
(
x̂ (T)

)
, of the estimator.

In both cases, a reasonable decision-making strategy is
the maximum likelihood rule, which selects the value of x
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that maximizes the conditional probability of the observa-
tion given x:

x̂ML (T) = argmax
x

lnpT|X (T | x) (13)

= argmax
x

∑

i:F̄i (x)�=0

ηi (x) Ti − Ai (x) (14)

If ηi (x) were linear for all i, then the maximum could be
expressed in terms of the scalar sufficient statistic:

x̂ML (T) = argmax
x

n∑

i=1

aixTi + biTi − Ai (x) (15)

= argmax
x

Sx −
n∑

i=1

Ai (x) (16)

3.1 Maximum Likelihood Parameter Estimation

First consider the problem of estimating x over a contin-
uous set using the maximum likelihood estimator (MLE).
Assume that x is in the support of at least one level density,
i.e., fi (x) > 0 for at least one i ∈ {1, . . . , n}, so that the
parameter is identifiable and the log-likelihood is differen-
tiable. If the log-likelihood function (14) is strictly concave
in x, its maximum is the solution to the likelihood equation

0 = ∂

∂x
lnpT|X (T | x) (17)

=
∑

i:fi(x)>0

∂

∂x
(ηi (x) Ti − Ai (x)) (18)

=
∑

i:fi(x)>0

η′
i (x) (Ti − rFi (x)) . (19)

Substituting the mean of the binomial distribution (6), the
likelihood equation can also be expressed

∑

i:fi(x)>0

η′
i (x) Ti =

∑

i:fi(x)>0

η′
i (x)Ex [Ti] . (20)

In the special case where each ηi (x) is linear, (20) reduces
to S (T) = Ex [S (T)].

3.2 Achievable Performance

We can use tools from information theory to bound the
achievable performance of the estimator. An estimator is
called unbiased if Ex

[
x̂ (T)

] = x. For any unbiased esti-
mator x̂UE, the Cramér-Rao Lower Bound (CRLB) on the
conditional variance is

Varx
(
x̂UE (T)

) ≥ I (x)−1 , (21)

where I (x) is the Fisher information provided by T about
x [12]. The Fisher information is well defined for the

reference levels for which Fi (x) is differentiable at x and
fi (x) > 0. It is given by

I (x) = −Ex

[(
∂2

∂x2
lnpT|X (T | x)

)]
(22)

= −
∑

i:fi(x)>0

Ex

[
∂2

∂x2
lnpTi |X (Ti | x)

]
(23)

=
∑

i:fi(x)>0

Ex

[(
∂

∂x
(ηi (x) Ti − Ai (x))

)2
]

(24)

=
∑

i:fi(x)>0

r
fi (x)2

Fi (x) F̄i (x)
(25)

= r
∑

i:fi(x)>0

η′
i (x) fi (x) . (26)

Figure 3 shows the Fisher information contribution of a
single sensor as a function of the distance between the nom-
inal level vi and the parameter x for normally distributed
offsets with mean zero and variance σ 2. The sensors provide
the most Fisher information about signals near their nomi-
nal reference levels and little information about signals far
from their levels.

To find a simple, approximate expression for the CRLB
of a high-resolution sensor array, notice that Eq. 26 has
the form of a probability-weighted mean of η′

i (x) which
resembles an expectation. Suppose that the nominal refer-
ence levels are densely spaced a uniform distance Δv � σ

apart and that x is far from the smallest and largest reference
levels. Let V be a random variable distributed according to
the offset PDF fV . The total Fisher information (26) can be
approximated as

I (x) = r

Δv

∑

i

η′ (x − vi) f (x − vi) Δv (27)

≈ r

Δv

∑

i

η′ (x − vi) Pr {V ∈(x−vi, x − vi+1)} (28)

≈ r

Δv
E

[
η′ (V )

]
. (29)
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Figure 3 Fisher information contributed by observation Ti with nor-
mally distributed offsets. The information is largest when x = vi .



J Sign Process Syst

For the normal distribution with zero mean and variance σ 2,
E

[
η′ (V )

] ≈ 1.806/σ by numerical integration. For a logis-
tic distribution with variance σ 2, it is π/(

√
3σ) in closed

form. There are some densities, such as the uniform density,
for which the Fisher information curve does not have finite
area and therefore this approximation is not valid. Figure 4
shows the exact Fisher information as a function of x and
Δv for a sample sensor array with normally distributed off-
sets. The approximation (29) is close when Δv ≤ σ . Thus,
the high-resolution CRLB appears to be proportional to
σΔv/r , the ratio of the standard deviation of the offsets to
the average density of sensor levels.

4 A Multistage Architecture

Solving the likelihood equation exactly requires the full
observation vector T; yet Fig. 3 shows that only a subset of
the sensor measurements contribute significant information
about x. The calculation could be simplified significantly
if the low-information observations were removed. There-
fore, we propose the two-step estimation architecture shown
in Fig. 5. A simple coarse estimator makes a rough esti-
mate of x and uses it to select a subset of the observations.
That lower-dimensional observation vector is then passed
to a more complex inference function that makes the final
decision or estimate.

4.1 Subset Selection

Denote the selected subset by T∗. Its length n∗ ≤ n is a
design choice that will be discussed later. For simplicity, we
will assume that n∗ is fixed, though in implementation it
may be smaller for x values near the boundaries of the level
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Figure 4 Fisher information I (x) as a function of x for an array of
sensors with nominal levels uniformly spaced Δv apart and normally
distributed offsets with unit variance. The peaks of each curve corre-
spond to the nominal levels. As the spacing grows smaller, the Fisher
information approaches the high-resolution approximation (29) shown
by the horizontal gray line I (x)Δv = 1.806.
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Figure 5 A multistage architecture for statistical inference problems.
A coarse estimate is used to select a subset of the output statistics that
contains most of the information about the parameter.

range. For the remainder of this paper, we relabel Fk , fk ,
Ak and ηk to correspond to the elements Tk of T∗ for k =
1, . . . , n∗. We assume that n∗ is small enough that fk (x) >

0 for all k.
The likelihood for T∗ has the same form as that for T (9):

lnpT∗|X
(
t∗ | x

) = h
(
t∗

)
exp

⎧
⎨

⎩

n∗∑

k=1

ηk (x) tk − Ak (x)

⎫
⎬

⎭
.

(30)

Similarly, the Fisher information is

I ∗ (x) = r

n∗∑

k=1

η′
k (x) fk (x) . (31)

The first stage need not have high resolution, so there
are many possible solutions for selecting the subset. One
convenient approach is to assign each subset a correspond-
ing coarse estimate and choose one such estimate based
on a few of the observations. For example, suppose that
the coarse estimator has access to a single sensor out-
put (say, Yi,1) from each nominal reference level and that
n∗ is even. Let Q = ∑n

i=1 Yi,1 be the sum of these
outputs. A simple subset selection rule chooses T∗ ={
TQ−n∗/2+1, . . . , TQ+n∗/2

}
and corresponding coarse esti-

mate x0 = v1 + Δv
(
Q − 1

2

)
for n∗

2 ≤ Q ≤ n − n∗
2 . This

rule is used in the simulations in Section 6. The subset selec-
tion stage can be made more or less accurate based on the
requirements of the inference stage.

4.2 Linear Model

When the subset is restricted to a sufficiently small range of
x values, the nonlinear function ηk (x) can be well approxi-
mated by a linear function with slope η′

k (x0), where x0 is the
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coarse estimate from the first stage of the estimator. Then
the log-likelihood function is approximately

lnpT∗|X
(
t∗ | x

) ≈ h∗ (
t∗

)
exp

⎧
⎨

⎩

n∗∑

k=1

η′
k (x0) xtk − Ak (x)

⎫
⎬

⎭

(32)

where h∗ (t∗) includes all terms that depend only on t∗ and
not x. In that case, the n∗-dimensional vector T∗ can be
reduced to the scalar statistic

S∗ (
T∗, x0

) =
n∗∑

k=1

η′
k (x0) T ∗

k , (33)

which has conditional mean

Ex

[
S∗ (

T∗, x0
)] =

n∗∑

k=1

η′
k (x0) rFk (x) (34)

and conditional variance

Varx
(
S∗ (

T∗, x0
)) =

n∗∑

k=1

η′
k (x0)

2 rFk (x) F̄k (x) . (35)

By the same reasoning from Section 2, if ηk (x) were truly
linear, then S∗ would be a complete sufficient statistic for
T∗. Because ηk (x) is generally a nonlinear function, there
is some information loss.

5 Approximate Inference

5.1 Local Linear Estimator

To estimate x using minimal computation, we would like
to find a linear estimator of the form x̂ (T∗) = w0 +∑n∗

k=1 wkTk , as shown in Fig. 6. Using the linear approxi-
mation for ηk (x), the likelihood (19) becomes

0 ≈
n∗∑

k=1

η′
k (x0) (Tk − rFk (x)) (36)

= S∗ −
n∗∑

k=1

η′
k (x0) rFk (x) . (37)

This equation is still nonlinear. Let us make the additional
linear approximation Fk (x) ≈ Fk (x0) + fk (x0) (x − x0).
Substituting this approximation into Eq. 37 gives

0 ≈ S∗ −
n∑

k=1

η′
k (x0) r (Fk (x0) + fk (x0) (x − x0)) . (38)

T1

T2

Tn

w2

wn

w0

x̂

w1

Figure 6 Under the linear approximation of the log-likelihood of a
subset of observations T∗, we can derive a linear estimator for x.

Solving this approximate likelihood equation gives x̂LL, the
local linear estimator:

x̂LL
(
T∗, x0

) = x0 + S∗ − ∑n∗
k=1 η′

k (x0) rFk (x0)
∑n∗

k=1 η′
k (x0) rfk (x0)

(39)

= x0 + S∗ − Ex0

[
S∗]

I ∗ (x0)
(40)

= x0 − Ex0

[
S∗]

I ∗ (x0)
+

n∗∑

k=1

η′
k (x0)

I ∗ (x0)
Tk . (41)

If the reference levels are uniformly spaced and x0 is fixed
for each subset, such as to the centers of the intervals of
nominal reference levels, then the linear estimator weights
are the same for each subset.

The performance of the local linear estimator depends on
the accuracy of the initial estimate x0. For a given x0 and x,
the mean of the estimate is

Ex

[
x̂LL

(
T∗, x0

)] = x0 +
n∗∑

k=1

rη′
k (x0)

I ∗ (x0)
(Fk (x) − Fk (x0))

(42)

and the variance is

Varx
(
x̂LL

(
T∗, x0

)) =
n∗∑

k=1

(
η′

k (x0)
)2

I ∗ (x0)
2

rFk (x) F̄k (x) (43)

=
n∗∑

k=1

Ik (x0)

I ∗ (x0)
2

Fk (x) F̄k (x)

Fk (x0) F̄k (x0)
. (44)

If x = x0, thenEx

(
x̂LL

) = x and Varx
(
x̂LL

) = I ∗ (x)−1, so
the estimate is unbiased and achieves the CRLB with equal-
ity at those points. Otherwise, performance degrades as x0
grows farther from x. Figure 7 shows the conditional mean
and variance of x̂LL as functions of x − x0 for normally dis-
tributed offsets. To achieve good performance, the coarse
estimate should be well within one standard deviation of the
true parameter.
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Figure 7 The conditional mean (top) and variance (bottom) of the
linear estimate as a function of x for x0 = 0. The estimator is unbiased
and efficient when x = x0.

5.2 Inference with the Scalar Statistic

The previous section describes an architecture for estimat-
ing the value of the input signal, much like a conventional
analog-to-digital converter. For many inference problems,
such as symbol detection in a communication receiver, the
value of the input is important only to the extent that it con-
tains information about another variable, in that case the
transmitted symbol. For such applications, the observation
statistic can be considered a soft output of the sensor array
to be used directly for the inference problem; the estimated
input is not necessary.

Consider a classification problem in which the input
is a random variable X drawn from one of m distribu-
tions, fX,1 (x) , . . . , fX,m (x), where each distribution cor-
responds to a class θ ∈ {1, . . . , m}. The goal is to find the
class based on the observations from the sensor array. The
maximum likelihood classifier is

θ̂ML (T) = arg max
1≤θ≤m

pT|Θ (T | θ) (45)

= arg max
1≤θ≤m

∫
pT|X (T | x) fX,θ (x) dx (46)

where the integral is over the support of fX,θ . Using the
subset of output statistics and assuming that fk (x) > 0

for all k and all x in the support of fX,θ , the classifier
is

θ̂ML
(
T∗)=arg max

1≤θ≤m

∫
exp

⎧
⎨

⎩

n∗∑

k=1

(ηk (x) Tk

−Ak(x))

⎫
⎬

⎭
fX,θ (x) dx . (47)

Finally, using the linear approximation from Eq. 32 gives
the approximate classifier

θ̂
(
S∗)=arg max

1≤θ≤m

∫
exp

⎧
⎨

⎩
S∗x−

n∗∑

k=1

Ak (x)

⎫
⎬

⎭
fX,θ (x) dx .

(48)

Thus, the scalar output statistic S∗ can be used for a clas-
sifier that approximates the maximum likelihood classifier.
The performance of such a classifier will be evaluated in
Section 6.2 for a symbol detection problem.

6 Performance

The performance of the proposed inference architecture is
demonstrated using two simulated systems: a parameter
estimator and a symbol detector. In both cases, the sensor
array levels are uniformly spaced over an interval slightly
wider than the range of the input signal with normally dis-
tributed offsets. The coarse estimator is that described in
Section 4.1. The subset size is given in terms of the interval
length instead of the number of elements; a length-2σ sub-
set includes the outputs of all sensors with nominal levels
within ±σ of x0, for example.

6.1 Parameter Estimation

First we consider the analog-to-digital conversion problem
of estimating a voltage signal at the input to an array of com-
parators. The nominal levels are uniformly spaced between
0 V and 1 V. The parameter is estimated using a full max-
imum likelihood estimator and a two-stage linear estimator
with varying subset size. The Monte Carlo simulations used
256 input signals between 100 and 900 mV and 1024 sets of
random levels for each data point.

Figure 8 shows the mean square error (MSE) perfor-
mance of the estimators as a function of the number of
nominal levels n for r = 16 and σ = 20 mV. The dashed
line shows the high-resolution CRLB σΔv/1.806r , where
Δv = (1V) /(n − 1). The MLE and linear estimators
all have MSE performance that decreases asymptotically
linearly with n, as expected. The MLE is close to the
high-resolution CRLB for n > 10, which corresponds to
Δv < 5σ in this case. The two-stage estimator performance
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Figure 8 Simulated mean square error performance of the parameter
estimator as a function of n for subset interval widths 1σ , 2σ , and 4σ .
Here r = 16 and σ = 20 mV.

depends on the size of the subset, with larger subsets per-
forming better. For example, with n = 401 (Δv = σ/8),
the 1σ subset estimator had MSE roughly three times that
of the MLE while using 2 % of the sensor outputs, while the
4σ subset estimator had MSE about 4 % higher using 8 %
of the sensors. There is little benefit to using much larger
subsets because those observations with nominal levels far
from the parameter contribute negligible information.

Figure 9 shows the MSE as a function of σ 2 for level
spacing Δv = 5 mV and varying values of r . Both the MLE
and the two-stage estimator achieve performance close to
the high-resolution CRLBwhen σ is comparable to or larger
than the spacing between levels but small compared to the
input range. In this range, the MSE scales roughly linearly
with σ and inversely with r , as expected. Notice that MSE
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Figure 9 Simulated mean square error performance of the parameter
estimator as a function of σ 2 for Δv = 5 mV and r = 1, 4, 16, and 64.
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Figure 10 The sensor array is used to detect symbols transmitted
through a noisy channel.

performance is worse for σ � Δv when r > 1, as the
sensors within each nominal level are tightly clustered and
do not cover the input range.

6.2 Symbol Detection

Next, we demonstrate the performance of the array for a
statistical inference problem, detecting symbols in noise.
Figure 10 shows the simulated system: the input is chosen
from an alphabet of m = 16 real-valued symbols spaced
d = 0.5 apart and corrupted by normally distributed noise
with mean zero and variance ρ2. The noisy symbol is the
input to the sensor array withΔv = 0.05 and offset variance
σ 2. The classifier recovers the transmitted symbol using
either a full maximum likelihood calculation (46) or the
approximate decision rule (48) with subset size 4σ . If the
classifier were able to measure x perfectly and the symbols
were transmitted with equal frequency, then the probability
of error would be

Perr,ideal = 2m − 2

m
Q

(
d

2ρ

)
, (49)

where Q(·) is the complementary normal CDF.
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Figure 11 Simulated error probability for detecting noisy symbols
with the stochastic sensor array. The dashed lines show the ideal error
bounds (49).
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The Monte Carlo simulations used 1024 sets of random
levels and a total of 217 random noise samples for each data
point. The error probability is averaged over each of the 16
symbols. Figure 11 shows the simulated error rate versus
offset variance. The dashed line shows the error rate with
perfect measurement (49) for each value of the noise power.
Both classifiers achieve error rates close to this ideal error
rate for small σ 2. The performance of the approximate clas-
sifier is close to that of the full ML classifier as long as σ is
not much larger than d . The scalar output statistic is there-
fore a reasonable alternative to the full set of observations
for classification.

7 Conclusions

The simulation results suggest that the stochastic signal
acquisition architecture performs close to the CRLB for
well-chosen design parameters. The performance of the
sensor array depends on the Fisher information, which is
proportional to r/σΔv whenΔv is comparable to or smaller
than σ . If the statistics of the sensor reference levels are
known, then the system designer can use the analysis pre-
sented here to predict the performance of the sensor array.
To design a high-resolution signal acquisition system using
sensors with a fixed offset variation, a designer could place
the nominal levels with a uniform spacingΔv < σ . To reach
the desired level of performance, increase r by replicating
the existing sensor array and summing the outputs. With
this approach, performance is improved without increasing
the dimensionality of the sufficient statistic T, resulting in a
scalable design.

The two-stage design further reduces the size of the
statistic by finding a coarse estimate and taking a sub-
set of the observations. The subset size is a design choice
that trades performance with complexity and depends on
the sensor variation. If the range is too narrow, then the
estimator will be more sensitive to errors in the coarse
estimate. If it is too wide, then the estimator may be need-
lessly complex. The simulation results shown in Fig. 8
suggest that the subset should cover at least a few stan-
dard deviations to achieve performance close to that of
the full observation vector for parameter estimation. The
output can be further reduced to a scalar using a highly
parallel linear combination of the observations. The lower-
dimensionality statistics produced by the two-stage design
can be used directly for inference applications such as
detection, estimation, and classification. These inference
algorithms incorporate the randomness of the measurement
into the overall observational model as another source of
uncertainty.

The stochastic sensor array is useful in applications for
which reliable sensors are unavailable or costly and it is
preferable to use sensors with higher variability. Whereas
many previously proposed designs using unreliable com-
parators require measurement or calibration, the architec-
ture described here does not measure the true thresholds. As
long as the variations in the sensors are independent, the sys-
tem can average over their measurements to produce a more
reliable decision. In contrast to conventional quantization
architectures, the mean square error of the estimate from the
stochastic mixed-signal interface can be much lower than
the variance of the random offsets. By leveraging the natural
variation in device characteristics, we can build reliable
systems even with unreliable components.
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